実力養成会の皆さん、保護者の皆さん、そして、広島県のY君、こんにちは。
本日は、2015年三重大学理系数学第3問を取り上げます。
第3問です。
(1)は、不等式の証明・・・・・増減表を作れば、OK!!
(2)は体積・・・・・グラフの概形を描けば立式はすぐでしょう・・・・・
さぁ~~、その後の計算が、面倒くさい!! というか、大変な作業です・・・・
この計算・・・・ポイントは2つ!!
置換積分と部分積分・・・・
「いやな部分」は、丸ごと置換!!
置換からの部分積分でず。
しかも、1回で完結パターンと2回連続パターンが混在してますよ。
こんなんで、ひるんじゃダメっ!! その後は、
パーツごとに計算して、最後に一気にまとめる・・・・・
三重大学・・・・・北大に近い、標準的な、いわゆる「良問」ばかりです。
方針が立たない・・・・・ということはないでしょう・・・・
「赤本」にもあるように・・・・
「思考力」が重要になります。
「記述力」、「計算力」が問われます。
特に、「計算力」について、さらに踏み込むと・・・・・
①計算を進めていき、一区切りしたとこで・・・・各パーツごと改めて、計算する。
それと、各パーツを取り出して、気持ちを新たにして部分積分を実行する。
②あらかじめ、下書き用紙に、計算して、検算のつもりで、答案用に清書していくイメージで答案を作り上げていく・・・・こんな感覚です。
③答案用紙は、「計算過程」はもちろんでずか、「自分はこう考えて、こういう計算をしました」という強いメッセージを書くことです。採点する側は、「計算過程も見ますが、みなさんの”主張”を見たいんです」。
具体的には・・・・計算がめっちゃ面倒・・・・・
そのための工夫として置換しました。
計算がめっちゃシンドイ・・・・・・・・・・・・・・・・
そのために、パーツごと計算しました。
すなわち、「困難」に直面した時、どのように対処しているか?
採点者は、ここを見たいんです!!
ということは・・・・
正解よりも
「部分点」の積み重ね・・・
私は、三重大学理系数学の攻略ポイントは、ここだと確信してます・・・
今日も最後まで、読んでいただき、ありがとうございました。